Blog

What is RFID and how does it work?

RFID (radio frequency identification) is a form of wireless communication that incorporates the use of electromagnetic or electrostatic coupling in the radio frequency portion of the electromagnetic spectrum to uniquely identify an object, animal or person.

Every RFID system consists of three components: a scanning antenna, a transceiver and a transponder. When the scanning antenna and transceiver are combined, they are referred to as an RFID reader or interrogator. There are two types of RFID readers -- fixed readers and mobile readers. The RFID reader is a network-connected device that can be portable or permanently attached. It uses radio waves to transmit signals that activate the tag. Once activated, the tag sends a wave back to the antenna, where it is translated into data. Alex 755nm Laser Hair Removal

What is RFID and how does it work?

The transponder is in the RFID tag itself. The read range for RFID tags varies based on factors including the type of tag, type of reader, RFID frequency and interference in the surrounding environment or from other RFID tags and readers. Tags that have a stronger power source also have a longer read range.

RFID tags are made up of an integrated circuit (IC), an antenna and a substrate. The part of an RFID tag that encodes identifying information is called the RFID inlay.

There are two main types of RFID tags:

There are also semi-passive RFID tags, meaning a battery runs the circuitry while communication is powered by the RFID reader.

Low-power, embedded non-volatile memory plays an important role in every RFID system. RFID tags typically hold less than 2,000 KB of data, including a unique identifier/serial number. Tags can be read-only or read-write, where data can be added by the reader or existing data overwritten.

The read range for RFID tags varies based on factors including type of tag, type of reader, RFID frequency, and interference in the surrounding environment or from other RFID tags and readers. Active RFID tags have a longer read range than passive RFID tags due to the stronger power source.

smart labels are simple RFID tags. These labels have an RFID tag embedded into an adhesive label and feature a barcode. They can also be used by both RFID and barcode readers. Smart labels can be printed on-demand using desktop printers, where RFID tags require more advanced equipment.

There are three main types of RFID systems: low frequency (LF), high frequency (HF) and ultra-high frequency (UHF). Microwave RFID is also available. Frequencies vary greatly by country and region.

The frequency used will depend on the RFID application, with actual obtained distances sometimes varying from what is expected. For example, when the U.S. State Department announced it would issue electronic passports enabled with an RFID chip, it said the chips would only be able to be read from approximately 4 inches away. However, the State Department soon received evidence that RFID readers could skim the information from the RFID tags from much farther than 4 inches -- sometimes upward of 33 feet away.

If longer read ranges are needed, using tags with additional power can boost read ranges to 300-plus feet.

RFID dates back to the 1940s; however, it was used more frequently in the 1970s. For a long time, the high cost of the tags and readers prohibited widespread commercial use. As hardware costs have decreased, RFID adoption has also increased.

Some common uses for RFID applications include:

Using RFID as an alternative for barcodes is increasing in use. RFID and barcode technologies are used in similar ways to track inventory, but there are some important differences between them.

Near-field communication (NFC) enables data to be exchanged between devices by using short-range, high-frequency wireless communication technology. NFC combines the interface of a smart card and reader into a single device.

RFID is prone to two main issues:

A common RFID security or privacy concern is that RFID tag data can be read by anyone with a compatible reader. Tags can often be read after an item leaves a store or supply chain. They can also be read without a user's knowledge using unauthorized readers, and if a tag has a unique serial number, it can be associated to a consumer. While a privacy concern for individuals, in military or medical settings this can be a national security concern or life-or-death matter.

Because RFID tags do not have a lot of compute power, they are unable to accommodate encryption, such as might be used in a challenge-response authentication system. One exception to this, however, is specific to RFID tags used in passports -- basic access control (BAC). Here, the chip has sufficient compute power to decode an encrypted token from the reader, thus proving the validity of the reader.

At the reader, information printed on the passport is machine-scanned and used to derive a key for the passport. There are three pieces of information used -- the passport number, the passport holder's birth date and the passport's expiration date -- along with a checksum digit for each of the three.

Researchers say this means passports are protected by a password with considerably less entropy than is normally used in e-commerce. They key is also static for the life of the passport, so once an entity has had one-time access to the printed key information, the passport is readable with or without the consent of the passport bearer until the passport expires.

The U.S. State Department, which adopted the BAC system in 2007, has added an anti-skimming material to electronic passports to mitigate the threat of undetected attempts to steal users' personal information.

There are several guidelines and specifications for RFID technology, but the main standards organizations are:  

Each radio frequency has associated standards, including ISO 14223 and ISO/IEC 18000-2 for LF RFID, ISO 15693 and ISO/IEC 14443 for HF RFID, and ISO 18000-6C for UHF RFID.

RFID systems are becoming increasingly used to support internet of things deployments. Combining the technology with smart sensors and/or GPS technology enables sensor data including temperature, movement and location to be wirelessly transmitted.

The next U.S. president will set the tone on issues such as AI regulation, data privacy and climate tech. Where do prominent ...

For many organizations, system upgrades mean investing time, money and resources. Discover how to modernize legacy applications ...

A strong DX strategy details an organization's current state, its plans for the future and the actions to achieve those goals. ...

A new Private Industry Notification focuses on ransomware trends involving attacks against casinos as well as a callback phishing...

Atlassian's Confluence Data Center and Server products are under attack again as reports of widespread exploitation roll in just ...

Respondents to a new Enterprise Strategy Group/ISSA survey offered five key points on how to strengthen an organization's ...

Individually, 5G and SD-WAN promise many benefits for businesses. As a pair, 5G and SD-WAN could specifically enhance network ...

Network and cloud teams should consider factors such as bandwidth and latency optimization, security, network redundancy, QoS and...

Sessions at ONUG Fall 2023 emphasized the value of a unified networking and security approach. GSK integrated the two to begin ...

Rocky Linux and AlmaLinux are new distributions created after Red Hat announced the discontinuation of CentOS. These ...

With CentOS 7 and RHEL 7 reaching end of maintenance, RHEL admins and developers must look into other OS options. Follow this ...

The lift-and-shift approach moves an app and its data from one environment to another. Understanding what's involved can help a ...

The vendor's new integration with vector database specialist Pinecone is designed to enable users to ensure quality of the data ...

Assemble the six layers of a big data stack architecture to address the challenges organizations face with big data, which ...

The data virtualization specialist's platform update includes natural language processing capabilities that reduce repetitive ...

What is RFID and how does it work?

Alex And Yag Laser All Rights Reserved, Copyright 2005 - 2023, TechTarget Privacy Policy Cookie Preferences Cookie Preferences Do Not Sell or Share My Personal Information